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INTRODUCTION

The present paper is intended as a sequel to the authors’ 
previous work “On the field theory of nuclear forces” [11.

In the latter, the question was discussed, whether it would be 
possible in a well-defined way to delimit a domain in which the 
meson field theory, in spite of the fundamental difficulties of its 
quantization, would still yield consistent results. For this pur
pose, a point of view analogous to the “correspondence” treat
ment of quantum electrodynamics was adopted and a general 
prescription could be formulated according to which a consistent 
interpretation of the formalism may be obtained. For the ap
plication of this prescription to the problem of nuclear forces, 
a first requirement is to separate the “static” part of these forces, 
for the same reason as the Coulomb forces in electrodynamics 
must be separated from the radiation field before a correspond
ence treatment of the latter can be arrived at. It was then 
shown that such a separation of the static forces could simply 
be effected by a canonical transformation, and the application 
of the general critérium mentioned above to the expression ob
tained in this way for the static forces led to the adoption of 
the so-called “mixed” meson theory, i. e. a mixture of vector 
and pseudoscalar meson fields with properly chosen intensities 
of the corresponding nuclear sources [2]. While the consequences 
of the point of view just sketched for the theory of /Tdisin- 
tegration and meson life-time have been fully discussed [3], its 
bearing on the electromagnetic properties of nuclear systems 
remained to be examined: this is the program of the present 
paper.

The completion of this work, however, has been much de
layed, partly due to fortuitous circumstances, but partly also on 
account of the development of the subject itself. In fact, it was
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pointed out in the meantime by one of us [4] that the mixed 
theory appeared as an elementary (z. e. not mixed) form of meson 
theory in a five-dimensional representation. A subsequent survey 
of the formal possibilities for five-dimensional meson field theo
ries even showed that the mixed theory was the only combination 
of four-dimensional types of meson fields possessing the property 
just mentioned of coinciding with an irreducible five-dimens
ional type of field [5]. Two possible interpretations of such a 
five-dimensional representation were discussed; of these, it ap
peared that the projective interpretation was especially well- 
suited for the incorporation of the interaction with the electro
magnetic field [6]. In this connexion, the main formulae con
cerning this interaction have already been published [6] and 
applied to the problem of the photo-elfect of the deuteron [7]. 
On the other hand, this and other problems involving electro
magnetic interactions have also been treated by several authors 
on the basis of different assumptions about meson fields and 
nuclear forces. It is, therefore, not likely that the present paper 
will contain any concrete result not already known to the 
physicists acquainted with the problems concerned. The interest 
it may nevertheless offer would rather lie in the more methodic
al aspects of the question, as viewed according to the general 
lines recalled above. By reason of this circumstance, we have 
decided also to include, when necessary, already well-known 
developments in an endeavour to present a rounded-off account 
of the questions treated.

Special care has been devoted to the more formal side of 
the theory, such as the systematic use and extension of the 
“symbolical space” algorithm already introduced in our first 
paper [1]. Since this system of representation might at first sight 
appear rather cumbrous when applied to charged meson fields, 
—in contrast to the more common representation of these fields 
by complex operators,—a few words on this subject will per
haps not be out of place here. An examination of the calcul
ations developed in the Appendix with the help of this form
alism will indeed show that they are not any lengthier or more 
intricate than those in which complex field variables are used. 
In most cases, we have even applied, for the sake of a more 
direct expression of the physical meaning of the quantities 
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considered, a three-dimensional vector notation in preference to 
a four- or a five-dimensional tensor notation. This requires, it 
is true, some practice of vector analysis which otherwise would 
not be needed and is, of course, not so appropriate to questions 
involving space and time variables in a symmetrical way (an 
example of such a case is afforded by the calculation of the 
magnetic moment of free mesons; cf. p. 42); still, the symbolic 
space representation of the charged fields proves very con
venient even then.

In the first part of the paper, we recall the general method, 
applicable to any field theory, of taking into account the in
teraction with the electromagnetic field; on this occasion, we 
adapt the general formulae to the symbolical space represent
ation, using Hermitian field variables. In the last section of this 
part, the interaction with a slowly varying external field is 
more especially considered and the multipole moments suited 
to the treatment of such a case—in fact, only the first few 
ones: electric dipole, and quadrupole, and magnetic dipole mo
ments—are introduced. The second part of the paper is chiefly 
concerned with the application of the canonical transformation 
separating the static meson fields to the interaction of a system 
of nucleons and mesons with the electromagnetic field. This 
amounts to deriving the expression of the charge and current 
density operators in terms of the transformed variables; from 
these, the expressions of the multipole moments just mentioned 
are then easily obtained. The resulting formulae for all such 
electromagnetic quantities contain, besides the usual terms corre
sponding to free nucleons and free mesons, and others depending 
on both nucleon and meson variables, also terms of the so-called 
“exchange” type, i. e. terms which depend only on the nucleon 
variables in the form of a sum of expressions involving exchange 
of proton and neutron state between pairs of nucleons; the oc
currence of such exchange terms is a typical feature of field 
theory. There appear also, of course, further contributions of a 
singular character, which have to be rejected according to the 
above-mentioned general critérium; it is noteworthy, however, 
that a singular contribution corresponding to the anomalous 
magnetic moment of the nucleon may still be retained as being 
of a different origin, viz. due to the fact that a material point 
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model is adopted for the nucleons*.  It is clear that the method 
of canonical transformation here followed is superior to the 
usual perturbation method, above all in that it just permits 
easily to trace, so to say, the origin of the different terms oc
curring in any formula and so to facilitate their physical inter
pretation, especially in connexion with our general critérium. 
Furthermore, it also offers the practical advantage of requiring 
calculations much simpler and easier to survey than the per
turbation theory.

As regards the application of the general scheme so obtained 
to special problems, we confine ourselves to some brief indi
cations, since a more detailed treatment will be found in other 
publications. In this respect, we have already mentioned the 
investigation of the photo-effect of the deuteron by A. Pais [7]; 
we wish also to call attention to a forthcoming paper by J. Serpe 
which, among others, will contain a detailed comparison of the 
canonical transformation and perturbation methods and a dis
cussion of two singular effects (spreading of electric charge 
around a nucleon and anomalous magnetic moment of nucleons) 
providing appropriate examples of the application of our critérium. 
We should like here to mention that results of calculations by 
these authors, kindly put by them at our disposal, have been 
very valuable for the final redaction of this paper.

Empirical evidence, especially the latest information on cos
mic-ray mesons, may be considered on the whole to support 
the mixed theory [21. Still, in conclusion, we wish to emphasize 
once more its very serious limitations, already explicitly stated 
in our previous paper ([1], especially pp. 51—52). In particular, 
it is out of question that such problems as the scattering of 
fast mesons [8] could fall within the scope of this or any other 
form of meson theory as long as the deep-lying problems con
nected with the universal limiting length (denoted by r0 in [1]) 
are not brought nearer to their solution.

* In an analogous way, the static self-energy of a point nucleon may be 
considered a contribution to its mass.



PART I.

Electromagnetic properties of arbitrary fields.
§ 1. Gauge-invariance of Lagrangian.

Let us consider any field representing “charged” particles, 
i. e. particles capable of interaction with the electromagnetic 
field. If we assume that the force on such a charged particle 
due to the electromagnetic field is given by the familiar Lorentz 
expression, we may, according to an interesting theorem pointed 
out by Racah [9], conclude that there exists a Lagrangian from 
which this force can be derived. In fact, to be derivable from 
a Lagrangian, the expressions of the force components have 
to satisfy a set of necessary and sufficient conditions established 
by Helmholtz [10]; and Racah has shown that, if we also as
sume the force to be independent of the acceleration of the 
particle, these conditions just reduce to stating that it takes the 
form of the Lorentz expression.

We may thus start from a Lagrangian density

depending on the variables ()w, Qw, Al and their derivatives 
dF

F\i = —? (xl = X, y,z, cf); while the Az denote the components 
dxl

of the electromagnetic potential (vector potential A = Alt A2, A3 
= A1, A2, A3; scalar potential B = A4 = —A4), the represent 
the quantized variables defining the various types of charged 
particles considered, their Hermitian conjugates, numbered 
in an arbitrary way by the index w. As is well-known [11]*,

* It will be noticed that the following analysis is entirely analogous to 
that used for the derivation of the energy-momentum tensor from the invariance 
of the Lagrangian for arbitrary coordinate transformations [12]. The possibility 
of extending this method to any group, and in particular to the gauge-trans
formation group, has been pointed out to us by Dr. J. Podolanski. 
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the form of this Lagrangian giving rise to the required express
ion of the Lorentz force may simply be obtained by postu
lating the invariance of the Lagrangian for the so-called gauge
transformations of the form

Q'co = hc

A\ = Az + a|Z,
(1)

in which a is an arbitrary c-number function and the constants 
eM, referring to the different kinds of particles considered, are 
to be identified with the charges of these particles. In fact, the 
gauge-invariance of any functional, such as , may be expressed 
in the form*

where-----represents the “variational derivative”
dQ dQ

Putting
da?

(2)

we then get, for an infinitesimal value of the parameter a,

(3)

In connexion with the possible non-commutability of Qi0 and , 
it has here been assumed that in all terms of any factor 
QL or is written on the left of any Q(0 or Qw|f; if Qw|4 is 
not commutable with Q(l), further restrictions must be imposed

* The abbreviation “conj.” denotes the Hermitian conjugate of the express
ion preceding it.
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on the form of the Lagrangian if we wash to write down a 
general expression such as (3) for ô ß. We will make the as
sumption, fulfilled in all cases of actual interest, that the ex
pression (3) is valid in terms of ç-number variables also. We 
then derive from it the three following conditions for the 
Lagrangian density ■/?, ni2.:

Io <!?depends on the Ajy only through the field components

(4)

2° we have therefore

3° we have
Ó ß 

w fie a Qw + conj.

(5)

(6)

Now, the total Lagrangian density of a system of charged 
particles and electromagnetic field includes, besides the term 
hitherto considered which refers to the particles and their inter
action with the electromagnetic field, a term

(7)

describing the field itself. We may then write the field equations 
for the material variables in the form

ó Zf
(8)= 0,

and the electromagnetic equations in the formfield

or
ó ß
ôAi

â ßf 
ÔÂi

ô ß

dFij 
dxi

d4 = o
¿oí

(9)
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From the latter it follows that is to be interpreted as the 

total charge-current density of the system, the general express
ion of which is thus given by (5). In this formula, sl, given 
by (2), is the usual charge-current density, whereas the last 
term represents a polarization current density, as would arise 
from an electric and magnetic moment of the particles through 
which they would directly interact with the electromagnetic 
field; such direct interaction we shall, however, disregard and 
we shall, thus, in the following assume that only depends on 
the electromagnetic potential. In any case, since the divergence 
of the polarization current density automatically vanishes, the 
conservation law

6 xl
= 0 or (10)

follows from (6) in virtue of the field equations (8).
In order to derive the expression of in terms of the A¡, 

we start from the condition (5) which may be written more simply

~dAi (5')

and we further require ^(Qw, Qw|f; qJ,, (A; A¡) to reduce for 
A¡ —> 0 to the form of the Lagrangian density for the part
icles concerned in the absence of electromagnetic field. It is now 
easy to show that these two requirements fix the form of -¿?to*

This expresses, of course, the well-known result that the Lagran
gian density for charged particles in interaction with the electro
magnetic field is obtained from the Lagrangian for no field by 

replacing the operator --- . bv — i~A{.
ô xl ox1

* In the first place, the function (11) satisfies the two conditions. On the
• 4*  4*

other hand, if a function of Q(l), Q(I) | ¡ ; QM, Ai satisfies (5') and reduces 
to zero for Ai —> 0, it is readily seen that it must be identically zero.
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§ 2. Transition to Hamiltonian and separation of 
Coulomb field [13].

dLet PM = 07^— be the momentum canonically conjugate to
Q M I 4

Q(i); if -Z? is Hermitian (which we will assume), the momentum 
canonically conjugate to Q*,  is then P^. From the gauge-invariance 
of it follows immediately that a gauge-transformation (1) 
transforms the variables PM according to the equation

. eW

Let further grad P^; (£,, grad X>+) be the
Hamiltonian function with no electromagnetic field present, de
fined in the usual way by the equation

= ZXOo.u + eonj.-^“
(Ü

from which the variables Qw|4 are understood to be eliminated 
by means of the equations

The Hamiltonian with the field present, as derived from the 
Lagrangian (11), is then easily seen to be*  

where

is the charge density and

(grad — âj Qm, Pm\............j (12)

the gauge-invariant part of the Hamiltonian. Similarly, the 
Hamiltonian of the pure electromagnetic field (electric field E, 
magnetic field H) derived from the Lagrangian (7) is

* J dv denotes a volume integration over the whole space.
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B div E du, 
with

= |$(E2 + H2)rfp; (12')

the momentum canonically conjugate to A is — E, while that 
canonically conjugate to B is identically zero. The Hamiltonian 
of the total system may therefore be written

& du, (13)
J

with
(P = div E — Q. (13')

The Hamiltonian formalism must be completed, in the usual 
way, by the fundamental commutation rules and the accessory 
condition

(?= 0 (14)

to be imposed on the wave-function describing the state of the 
system. While the variables A and —E satisfy the ordinary 
canonical commutation rules, the variable B commutes with all 
other electromagnetic field quantities.

Let us now apply to the Hamiltonian the canonical 
transformation corresponding to an arbitrary change of phase 
of the variables Q(l), PM:

C(l) e0)
P„=r‘ïi‘P„ (15)

whereby a may be any operator independent of QM, PM and E 
(but eventually containing the electromagnetic potentials); such 
a transformation may, in fact, be put into the form*  

with

* This may readily be verified for tensor variables (satisfying canonical 
commutation rules) as well as for spinor variables (which obey commutation 
rules corresponding to the exclusion principle).
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Expressed in the new (primed) variables, the part ©#^ of the 
Hamiltonian is given by

ni (new var.)

where in accordance with a general convention made in 
this paper, denotes the same function of the new variables as 
the function ©^ of the old variables. Now, the gauge-invariance 
of ©^ may be stated in the form

(a,............. ) = of“1 ©^m (d + grad a,............) ©5°,

from which it follows, according to (12), that

\ = m (new var.)

= (<X, grad - A' - grad « Q'„,, (17)

As to the other terms of the Hamiltonian (13), they may be
written, if we put

of’Eef’-1 = E + Eo (18)
and

27= 2 (19)
in the form

= + | ^E'E'o + E'„E')
du+^'/ (new var.) (20)

and
c ->

(21)With ^(new var.) = dÍV E' + div Eq --  Q .

Now, we can choose a in such a way that the field Eo 
separated from the total field by the canonical transformation ©f 
be just the Coulomb field

C i< Eo = — grad J Ç <¡p0 du, çp0 = —;

div Eq = Q.

We have only to take
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whence
(23)

(24)

The new field variable then represents the transverse part 
of the electric field; since, according to (23),

rot (— grad ce) = 0, div (— grad a)
Í* . -> ,
\ div A • A <podu = div A , •J

and
\ B div E du

(25)
()«>

to cancel each other. Finally, the term simply represents 
(in the primed variables) the Coulomb energy

- J ß ^(„e.v var.) dl> =

x' I ) du du',

we also see that —grad a may be interpreted as the longitudinal 
part of the vector-potential A, so that in the new Hamiltonian 
(17) only the transverse part

Aj_ — A + grad a

(or rather Al) occurs, and this variable A'± also defines the 
magnetic field by H' — rot A^. On account of the condition (14), 
the value of B in the Hamiltonian (13) may be chosen arbi
trarily; taking for it the Coulomb potential ^gcpodu, one causes 
the terms 

so that we get a Hamiltonian

(new var.)

= ((J«» (grad —Al j 

from which the longitudinal parts of electric field and vector 
potential are entirely eliminated. Also the accessory condition
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^(new var.) = div E' = O (26)

does no more contain the longitudinal field; but it must not be 
forgotten that A', and not A'±, is canonically conjugate to —E'.

§ 3. Hermitian variables.
Chiefly when dealing with meson fields it may be advant

ageous to use Hermitian variables for the description of the 
charged particles. As such, we may conveniently take

+ Os = _^(O_Ot),
so that

Q = ^(Qi + -<?s)- (27)

Considering these formally as “components” of a “vector” Q 
along the directions of orthogonal axes 1 and 2, we may inter
pret the phase transformation Q' — ela Q as a “rotation” of 
angle a about the symbolical axis 3, perpendicular to 1 and 2. 
Any (Hermitian) “component” Q3 in the direction of the axis 3 
can be assumed to represent a neutral particle of the same 
kind. Taking the vector potential (and all electromagnetic field 
components) along the axis 3:

À = (o, o, a),

we may then express the gauge-invariant derivatives

through which the interaction with the electromagnetic field is 
introduced into the Hamiltonian, in the form

the sign a denoting a vector product in symbolical space. Call
ing finally JP the momenta canonically conjugate to O, we have
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P =
|/2

and, since the Lagrangian density has been assumed to be 
Hermitian, 1\ and are also Hermitian.

For the electric charge density, we have, according to (2), 
the general formula*

(28)

for the current density I, analogous formulae hold, being 
replaced by 7-^— (1 = 1, 2, 3). In order further to discuss these 

expressions, we must specify the commutation rules assumed 
for the JPW and O(l). Let us first consider a field, describing part
icles of charge e, which obeys the canonical commutation rules 

the index co referring to the different components of the field. 
The last term in o, which occurs for every given state of the 
field, then would represent an infinite additional charge density 
of this state; such a term, however, can easily be avoided by a 
slight modification of the Lagrangian density ; we have only 
to replace Zf by half the sum of -Z? itself and the expression 
obtained from it by reversing the order of all factors**  Q, Q\¡, 
Qr, Qii- We may, therefore, disregard the infinite “zero-point” 
charge density altogether and write, in this case,

* We use the notation [A, B]± = ABdzBA.
** In fact, if we repeat for the considerations of § 1, we find for 

and, consequently, for the charge-current density expressions in which the order 
d £>' 

of factors is automatically reyersed. We may further assume that ?----- =

—, a condition which is fulfilled in all cases of actual interest. We then get
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As an example of a field of this type, we may of course mention 
the meson field to be extensively treated in the following.

For the sake of completeness, we shall still briefly examine 
the case of Dirac particles (electrons or nucleons) described by 
four component wave-functions satisfying the commutation rules 
which correspond to the exclusion principle. The decomposition 
(27) of such variables into Hermitian constituents has been 
especially discussed, in connexion with the theory of electron 
pairs, by Majorana [14]; it will thus suffice here to write down 
the main formulae of this theory without entering into details 
as to their interpretation. The commutation rules may be stated 
as follows:

all anticommute with all

the indices w, w' (= 1, 2, 3, 4) refer to the components of the 
(spinor) wave-function; we may in the usual way consider the 
complex wave-function Q or its Hermitian constituents Q as 
matrices, with respect to w, of 4 rows and 1 column. For any 
Hermitian operator ©, we may then write*

e = IX‘C {(p« oM - o*  py + (o» oL)} •

which eliminates the zero-point charge density.
In this special case, it would also be possible (cf. [15]) to define the charge 

density by the expression 

M

which does not contain a zero-point density either; this form, however, has 
the disadvantage of not being Hermitian by itself, but only on account of the 
commutation rules.

* A denotes the transposed of A, and A*  its complex conjugate; one has 
A + = A*.

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XX, 12. 2
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\ Q+ @ Qdv =

= J Qi Qi dv + jj Qa ® dl) + ^Q1(<3+ (3*)Q^dv t

in particular, for a purely imaginary operator, the last term 
disappears. Choosing for instance, with Majorana, a represent
ation of the Dirac matrices for which the Hamiltonian is 
purely imaginary, we get for the total energy of a system of 
charged (and eventually neutral) Dirac particles the expression 

i J Q<^mQdv

used by Majorana. Since

we may now write
4 4

[^„1. <M_ [p„,. M- = -¿^(»a»),;
ft) = 1 CO = 1

the last term of (28) now gives

= *>(<>  A f/)3,

while the first would, on account of the commutation rules, 
contribute an infinite “zero-point charge density”’; but this may 
again be avoided by taking instead of 'Z? half the difference 
of <£’and /?'. For the current density, we find

/ = ie « A 4^3,

a denoting the well-known velocity matrices of the Dirac elec
tron theory. All these formulae coincide, of course, with those 
of Majorana.

§ 4. System in slowly varying external field.
An important class of problems is concerned with the be

haviour of a system of charged particles under the action of 
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an external electromagnetic field. We have then to introduce 
into the Hamiltonian of the system additional terms expressing 
the energy of interaction between this field and the particles 
considered. Let us in this section denote by A, B; E, H the 
variables of the external field. On account of (o') we may write, 
for the part of the interaction energy depending linearly on A,

— jj A I di> + B Q du, (31)

where we must take for the charge and current densities I, o 
their expressions in absence of any electromagnetic field (for 
A = 0): we shall neglect any contribution of higher order in A. 
The expression (31) is not modified by the canonical trans
formation e5° effecting the separation of the Coulomb field, so 
that, after this separation has been performed, it keeps the same 
form in terms of the new variables; we may here without danger 
of confusion omit the primes indicating functions of the new 
variables. More particularly, we shall consider a “slowly varying” 
field, i. e. assume that the relative variations of the field com
ponents over distances of the order of the dimensions of the 
system and times of the order of the proper periods connected 
with the system are small compared with unity. In such a case, 
we may put the expression of the interaction of the system 
with the external field into a more convenient form depending 
on the values of the electromagnetic field and its derivatives at 
some arbitrarily chosen point 0 and on the successive 2n-pole 
moments of the system with respect to this point. The pro
perties of the system to any desired approximation are then 
easily derived from the expressions of such 2n-pole moments, 
so that the problem is essentially reduced to the calculation of 
these operators.

We shall now carry out the transformation of the inter
action operator up to the second order of approximation. If we 
further assume that the velocities of the particles are small 
compared with the velocity of light, z. e. that the dimensions of 
the system are small compared with the proper wave-lengths, 
this approximation involves

2
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and

the total charge e = \ o du,

the electric dipole moment P — j ox du,

+ i C rthe magnetic dipole moment M = -

the electric quadrupole moment*  Qlk = — \oxlxkdu

* See the footnote on p. 21.
, . • dA / dA\we use the notation A = -—: or .dxi \ </.r4/

*** If Q is a tensor and zz a vector, Qu represents the vector with compo
nents Qi^Ufo.

k

(32)

of the system, the vector x being taken from 0 as origin. For 
this purpose, we start from the expansions

-*■  1 Í \
B = B() + x grado B() + ~x (x grad J grad0 B() + R

A = Ao 4~ (xgrad0) Ao 4-R', 

the residuals R, R' containing higher derivatives of the potentials 
with respect to the point O. Remembering further that**

\ Tdu = R,
•/

we therefore get***

J Bo du = eB0 4- P grad0 Bo + (Q grad0) grad0 Bo 4- R"

A I du = P Ao-\-^ I [x grad0) A() du 4- R'",

—
the residuals R", R"' being of higher order of approximation 
than the second. Now,

(xgradj Ao = — (ao grad0) x 4-grad0 (aox)—x a roto Ao

= A() 4- grad0 ( Ao x) — x a ;
and
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I gradj Ao = I A0 + x\I gradj Ao + Ao[l grad0J x—[I\x)H0 

= X (/gradj Ao + (æA/) Ho;

on the other hand,

I (xgradj A0+x (zgradj Ao = I grad { x (x gradj Ao).

We may therefore write

I (xgrad0) Ao = (JA/) hq + |/ grad{x (xgradj Ao} ,

whence

I (x grad0) Aodv = M Ho — j div I-x (x grad0) Ao dv

= M Ho + (Q grad0) Ao.

With this result, we thus get

A Zdp = — P Ao — M Ho - (Q grad0) A0 - R'"

= P Ao-MHo + (Qgrado) Ao

[™O + (0 grad0) Ao] - Í"

and, finally,
A I dv + \ B g dv

= eH0-PE0-MH0-(Q grad0) Eo

^[?A0 + (Qgrad0)A0] +..........  

(33)

* It should be pointed out that the usual (and, from a systematic point 
of view, more rational) definition of the quadrupole moment would be expressed 

in our notation by Qik — q11. This makes, however, no difference for
3 I

the interaction term —(Qgrado)E0 since, for an external field, div0 Eo = 0.
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the residual terms being of higher order. All terms but the last 
in formula (33) are familiar expressions, the interpretation of 
which it is superfluous to recall*.  As regards the last term, it 
follows from its being the time derivative of an operator that it 
does not give any contribution either to the mean value of the 
interaction energy in stationary states of the system or to the 
matrix elements corresponding to transitions between states of 
the total system with the same energy.

* See the footnote on p. 21.



PART II.

Electromagnetic properties of a system of nucleons 
and mesons.

In our previous paper [1]*,  arguments have been developed 
for assuming that nucleons produce two independent kinds of 
meson fields, viz. vector and pseudoscalar fields, each consisting 
of both (positively and negatively) charged and neutral mesons. 
From the standpoint of this “mixed” theory, we shall now 
investigate the interaction of a system of nucleons and of such 
meson fields with the electromagnetic field. In the first place, 
we shall derive, by a direct application of the general consider
ations of Part I of the present paper, the expression of the 
Hamiltonian function of the total system. To this Hamiltonian 
we shall then apply the canonical transformation effecting, as 
explained in NF, the separation of the static meson fields pro
duced by the nucleons and we shall briefly discuss the different 
electromagnetic interaction terms obtained in this way; we shall 
especially fix our attention on the interaction with an external 
electromagnetic field.

* In the following, this paper will be referred to as NF, its formula (n) 
as NF (n).

§ 1. Hamiltonian of the total system.
The expression of the total Hamiltonian, after separation of 

the Coulomb field, may immediately be obtained from formula 
(25) of Part I (in which we may, from now on, omit the primes 
denoting the “new” variables). For the description of the nu
cleons and meson fields, we shall use the notations of NF, to 
which we beg the reader to refer for the explanation of their 
meaning; to begin with, we have to do with the variables



24 Nr. 12

an additional term of electromagnetic interaction

(1)

$

originally introduced there before the separation of the static 
parts of the meson fields. Treating the nucleons as Dirac part
icles, i. e. attributing to them the Hamiltonian defined by 
formula NF (6), we get, according to formulae (25) and (.31) of 
Part I,

A represents the sum of the transversal vector-potential 
the field considered a part of the system and of the —>

cx of any “external” field eventually acting on 
nucí the nucleons may be expressed,

where
A± of 
vector-potential A
it. The current-density 7¡ 
with our choice of variables, by

Pnucl Ax dv

If there is also an external scalar potential Z?ex, a further term

arises, in which the charge density £>nucl is given by

As regards the meson fields, let us start from the Lagran
gian density with no electromagnetic field present (which had 
not been stated explicitly in NF):

/D o i {k2 ( F2- F2) + 6?2-/2} + JI U—N V

+r2-<i>2} + + Hjp2-o2),
(3)

-> —>■
in which the variables Ow are F, F and T, while G, I1, F, <I> 
are defined by the second formula NF (2), the first NF (1), NF 
(22), and the first NF (21), respectively. Following the procedure 
of Part I, we first see that —F and <l> are canonically conjugate
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to L and 4*,  respectively, while the variable V, the conjugate 
momentum of which identically vanishes, must in this case be 
regarded as defined in terms of the other variables by the access
ory Lagrangian equation, generalizing the first NF (2),

* The sign denotes a vector product in ordinary as well as in symbol
ical space.

k2 F = - div F-VN^ — A hF. 
he

(39

Let us now introduce the notations*

f = am
he

->
6? = G —

r = r + , «A*.
he

(4)

the quantities V, G, T being defined by NF (2) and NF (22); 
denote further by A the function A of V, G, I1, in which these 

zv -> ->
quantities have been replaced by V, G, I\ respectively. Since 
the accessory equation (3') amounts to saying that the variable z*,
I has to be replaced by the quantity V just introduced by the 
first formula (4), we may with this notation, according to the 
general results of Part I, write the Hamiltonian of the meson 
fields, including the interaction with the electromagnetic Held, 
in the form

j emes* Bex du;

in this formula, and e/iQ, are defined by NF (7) and NF 
(26), respectively, while £mes denotes the meson charge density

(5)

as given by formula (30) of Part I. For the meson
density we get

->
Imes

e

he

í ~ A -> + I
U-JFAF+r ATf3.

current

(6)
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This expression thus depends on the vjector potential A; for A 
= 0, it goes over into

Aies \<^A r-FAF+rA^. (7)

Accordingly, the part of the above Hamiltonian representing the 
interaction energy between meson fields and electromagnetic 
field consists of a linear term

and a quadratic term

->\2 / -> \2 / -> ->\21
U) + (aLa4*)  + k_2ÍAaf) }. (8)

The latter we will in the following neglect altogether; we shall, 
therefore, only be concerned with the expression 7nucl + /nies, 
keeping in mind, however, that it does not represent the total 
current density when an electromagnetic field is present.

Summing up, we thus get for the total Hamiltonian

Io the energy of the system of nucleons and mesons without 
electromagnetic field, denoted, as in NF (56), by 
<2  ̂F >

2° the energy of the electromagnetic field (formula (13) 
of Part I),

3° the total Coulomb energy of protons and charged mesons, 
4° the interaction energy approximately given by

“ j (Znucl + Aies) (A±+ Aex) du 

+ J (Pnucl+^mes) Be*dv> (9)

the exact expression being obtained by adding to (9) the 
quadratic term (8).

Now in NF, Part II, § 5, arguments of principle have been 
developed for applying to the nucleon and meson variables a 
canonical transformation separating the static part of the meson 
fields. In fact, the situation in meson theory has been compared 
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with that in electrodynamics and it has been pointed out that 
only the transformed variables provide a suitable starting point 
for a “correspondence” interpretation of the formalism. It further 
turns out that the transformation in question also brings about 
an appreciable simplification in the treatment of the electro
magnetic properties of nuclear systems.

We have, thus, now to calculate the expression of the above 
Hamiltonian function in terms of the transformed variables. 
For the first part, this has been done in NF; the second part 
is unaffected by the canonical transformation; as regards the 
two last parts, we have simply to insert for the quantities p = 

Ønud + ømes and 1 — Aiuci + Anes their expressions in terms of 
the new variables. In the following calculations, all symbols 
will be taken to denote the new variables and functions of the 
new variables; the old variables and the functions of those 
variables will then be distinguished by a (e. g. A). Thus, 
calling the canonical transformation operator, we write

A = A of”1

and, according to NF (57, 20, 36),

(10)

we may therefore write, with the notation introduced in NF (68),

(ID

It is just this formula we have to apply in order to express 
the quantities

0 Ønucl Ømes ’ Aiucl^Anes’ (12)

occurring in the interaction terms of the Hamiltonian, in terms 
of the new variables. In the following sections, we shall treat 
the charge density and the current density separately, since the 
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former has some peculiar properties not exhibited by the latter; 
we begin with the somewhat simpler case of the charge density.

§ 2. Expression of the charge density in terms of the 
transformed variables.

The first term in the expansion of type (11) of q — q, viz.

— [ £>], we shall denote by In the first place, we have*,
from (10) and (5),

Qx i’mesj

? (13)
= JF°A ¿7 + ETa/-* 0 A<b}3.

The dependence of on the variables pertaining to the different 
nucleons of the system may be expressed by

<¿7<f = ¿,T(i)Í3<i,dp; (14)
i •'

comparing then the expressions (13) and (10) of gx and eTf, 
we may also write

(15)

Passing now on to £nucl, we get from (2) 

A^$(l'cfo) 3,
and from (14)

whence, on account of (15),
¿ ?„ud] - - £ 3 (Í-Í®) $ e1'1 do. (16)

From (13) and (16), the term is thus found to be

We write [4, JB] for [A, _B]_ = AB— BA.
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(17)

giving by integration

sets of

(18)

(19)

(30) of the

(20)

that is linear in the free meson variables, so that it

e 
he

-> -> 
x' — X

in agreement with the invariance property of the 
of the system. The expression of p(1) may be put 
symmetrical shape by introducing the function of 
space variables

total charge 
into a more 
two

—

We see
does not give any contribution to the charge density of a nuclear 
system in the absence of free mesons; it only gives rise to a 
peculiar interaction between nucleons and free mesons when an 
external electrostatic field (e. g. the field of atomic electrons) is 
present.

> £
The next contribution to the expansion of q — q is

It consists of two terms of which the one,

Using (15) and the expressions NF (14) and NF 
static meson fields, we may write for £x (x, x')

i

(21)



30 Nr. 12

is obtained by disregarding the non-commutability of the meson 
field variables and is thus quadratic in these variables, while 
the other*,

* We denote by AB the symmetrical combination - (AB -r BA).

is independent of the meson held variables. The value (22) of 
Cexch ’s rea(lily obtained from (13); in fact, the field-independent 
part of ox] is just the expression (22) and, since it
may be written as a sum of terms relative to the single nu
cleons, and of which the space integrals vanish, it also repre
sents, according to (15) and (17), the field-independent part of 
2^“ [ While, as indicated in formula (21), the quadratic

term (>(2) is obviously a sum of contributions from the single 
nucleons, the field-independent term is, according to (22), of 
the form (t(i) A and does, therefore, not contain

i 4= k
any such contribution, but presents an “exchange” character with 
regard to the proton and neutron states of the nucleons; we shall 
call it the “exchange charge density”. For a pair of nucleons, 
exchange operators of the type just considered, {t(1)At(2,}3Ö)(1'2), 
have non-vanishing matrix elements only if the system is a 
deuteron, and these matrix elements refer to states in which the 
two particles have exchanged their proton or neutron character; 
in particular, the mean value of such an operator in any station
ary state of the system is zero.

For the p(xx entering into the expression (21) of the quadratic 
term we may write, according to (14) and (15),

The commutator in this formula has the following value (the 
index (z) having been dropped):
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[ ¿4]-- [ ¿4. ¿4]_+¡*>  [ <4- <4]+*<>.  [ «4-<4]+

(i)
3

Owing to the existence of the fluctuating zero-point meson 
field, this expression gives a contribution to the charge density 
operator of a nuclear system in the absence of free mesons, 
namely the mean value of ç(2) with respect to the meson vari
ables for the state corresponding to the zero-point meson field. 
Denoting such a mean value by and taking account
of the formulae (A 7) and (A 8) of the Appendix, we directly

-'■^{[^.¿4]+ + [^4-^4]+); 
putting

3"’^ a'°-H?n6w
(i)   irr« = 9if U

b{i} = +
IC

■>i) q(i) "*
j = grad — a

we get, and 6(l) being commutable,

[ <¿4', <¿4]_ = 2iab'tÁbj 

[ «4. ¿4] + = 2 [< aj + b’t bj +4(< bj +T>'taj}], 

so that finally

<0
Cxx

e
(M*

i (i) r (¡y (o i »"co4- r 7 it ’ + b3 b

— T

(24)

get from (24)
J dv' W?o {a(ir 4° + í(i)F ?(i}/
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according to (23). By means of the formulae (A 12), (A 13), and 
(A 14) of the Appendix, this takes the form

where r(l) = | x— and K2 is the Bessel function defined in 
the Appendix (of course, we have in our theory the relation 
/*2  = 92» but we have not made use of it in writing this formula 
in order to distinguish the contribution from pseudoscalar mesons). 
Owing to the singularity of K2 (z) for z = 0, however, the 
integral J dp SD?0 diverges, so that SD?0 {(?(2)) not well- 
defined. According to the general critérium proposed in NF, 
Part II, § 5, no significance can therefore be attributed to any 
effect depending on this term or similar effects arising from a 
perturbation calculation, and it is a fortiori useless to consider 
further terms in the expansion of q — o.

In particular, one might think that an additional interaction 
energy between a nucleon and an electron would be obtained 
by taking for Bex in duBex W?o {(’(2)/ the Coulomb potential

of an electron at a/0), since it is possible in this case to carry 
out the integration in such a way as to get a finite result. In 
fact, taking the position of the nucleon as the origin of polar 
coordinates and observing that SB0{çxx} is a spherically sym
metrical charge distribution, we may write, according to potent
ial theory,

where R = —x(0) | ; therefore
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$Ä„SB0{e(2)}rfu = -e

To this should then be added a term of the same order of 
magnitude, derived as a second order perturbation from the other 
couplings between nucleons and mesons; we need not consider 
it here, however, but refer the reader to the forthcoming paper 
by J. Serpe mentioned in the Introduction. The total effect has 
been first pointed out by H. Fröhlich, W. Heitler and B. Kahn 
[16], but its reality was contested by W. Lamb [17]. From our 
point of view, it should be clear that the whole effect must be 
discarded; a more detailed discussion will be found in Serpe’s 
paper.

The conclusions of this section may thus be summarized in 
the formula

Q = Cnucl + ('.nes + 0(1) + 0(2) + Øexch ’ (26)

the various terms being defined by (2), (5), (17) [with (13), (15)], 
or (19) [with (20)], (21) [with (24), (23)], and (22), respectively.

§ 3. Electric dipole and quadrupole moments.
With the help of (26), the expressions of the electric dipole 

and quadrupole moments, defined by formulae (32) of Part I, 
may be written down immediately in the same form. They 
comprise Io terms independent of the meson fields (which we 
often call, for the sake of brevity, “field-independent terms’’), 
viz. a term due to the elementary charges of the protons Qnucl) 
and an exchange term arising from the coupling through the 
meson field (as embodied in oexch); 2° a coupling term between 
nucleons and free mesons, linear in the meson field components 
(from (>(1)); 3° terms quadratic in the meson variables, viz. the 
contribution from the free mesons (^mes) an(l a quadratic coup
ling term (from o(2)).

It will be noticed that the spreading of the charge of a nucleon, 
which would be due to the interaction with the zero-point 
meson field, a part of which would be given by {(*(2)} ’ would 
possess spherical symmetry and would thus not give rise to 
any multipole moments (as usually defined; cf. footnote on p. 21);

1). Kgl. Danske Vidensk. Selskab, Mat.-fys. Mcdd. XX, 12. 3
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in fact, it would act only at large distances from the nucleon 
and the analysis of Part I, § 4 would not be applicable to it*.

The most notable terms characteristic of meson theory are 
the exchange terms which, using (22), NF (14, 3, 4, 89), and 
the relation

may be written

(27)

ni (28)

1
2

e
he

e
he

1 e
2 he

->
p

exch

1 « giffa
8 he K

■*(0  ■*(
X — X

olm =

exch

Owing to their exchange character, these terms do not give any 
contribution to the energy of stationary states of nuclear systems, 
but they may play a role in the calculation of the transition 
probabilities between such states under the influence of an 
external electric field. Since the mean value of the charge 
density (>nucl in any stationary state is invariant with respect to 
reflections about the centre of the nucleus, there is no electric 
dipole moment at all in these states. The interaction energy 
with an external electric field is thus determined, apart from 
the total charge, by the quadrupole moment Qnucl. A most im
portant example of such an interaction is met with in the theory 
of hyperfine structure, the external field in that case being the 
field of the atomic electrons. It may be shown**  that the

* The effect of a (finite) spreading of the nuclear charge on the atomic
levels (owing to the electrostatic interaction with the atomic electrons) is dis
cussed by H. Casimir, loc. cit. [18], § 5.

** See H. Casimir, loc. cit. [18], § 4. The expression (d) which forms the
starting point of Casimir’s investigation is identical with our interaction term 

— (Q grado) ^ó, where is the field due to the atomic electrons at the centre 
of the nucleus.
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quadrupole charge distribution of the nucleus enters into the 
expression of the interaction energy only through one parameter, 
called the “quadrupole moment” of the nucleus (in the spectro
scopic sense), and conveniently defined as 6 times the mean 
value of our Q33—— X ()“ for the state with the maximum 

ö i 
value of the magnetic quantum number*.

** In conformity with our previous notations, I represents the total cur
rent density of the system, including the dependence on the vector-potential.

For the calculation of transition probabilities between states 
of the same total energy, it is equivalent, as noticed at the end 
of § 4 of Part I, as operator of electric dipole interaction to use

—
— A0P instead of — E0P. At an early stage of the development 
of nuclear theory, it was pointed out by Siegert [19] that the
choice of the former operator might be advantageous because 
of a remarkable connexion between the operator**  P (or \ 

and the exchange potential of the nuclear forces; the exchange 

part of P could then directly be written down when this potent
ial was given. We shall now derive “Siegert’s theorem” from 
the more general point of view of our theory which also involves 
“velocity-dependent” couplings between the nucleons (z. e. terms 
depending on the velocities of the nucleons). For this purpose 
(since Siegert’s theorem is only concerned with processes in
volving no free mesons), we have only to consider the field- 

independent part of P; neglecting accordingly all terms in P which 
are quadratic in the meson field variables, we have only to cal- 
enlate (cf. (26)) the field-independent part of Pnucl+ P(1) + ^exCh- 
We begin with Pnucl; from

we get

->
p 

nucl

* This quantity has been calculated for the ground state of the deuteron 
in NF, Part III, § 3 (no restriction being made on the nuclear source constants; 
cf. [4]). It should be observed, however, that, since relative coordinates were 
used, the quantity Q there computed (formula (123)) should be divided by 4 
to yield the quadrupole moment in the spectroscopic sense.

3
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the field-independent part of which to a sufficient approximation 
reduces to

n (29)

In this formula, is the static potential of the nuclear forces 
given by NF (65), and the velocity-dependent potential given 
by NF (84)*  or NF (85):

j (2V' AT + K2 S' S) y t/p du'

\ ( AT' T 4- S' A J/ + JP K) grad y du du'.
(30)

All their terms are of the form \ A. \x') B \x) du du' with

(31)

2 Tic

(32)

->
J

x — x') du du',

i -

and, therefore,

I \ {at' A A + K2 S' A s}3 (í - Í') (p du du', 
ñc J

and an analogous expression for /£. We have 

í(i) = !.l (í') A.B

- J ({A- A T+ S' * M + /*  A «}., • grad y) (.

Looking apart from the relatively small term J', formula 
(33) already embodies the primitive form of Siegert’s theorem;

* The second formula (30) is equivalent with NF (84), though slightly 
modified in form.
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the comparison of (31) and (30) shows how the exchange part 
of ^o{^nuci} (or I may be built up from the static

potential . We may, however, obtain a more rigorous formul
ai

ation by taking account of the other terms of ?D?0(Pj, namely
S0?o {p(1) + Pexch} • We haVe frOm (19)

The contribution from Pexch may be put into a quite analogous 
form by writing, from (22) and NF (9, 14),

p
exch

= Ü du dv' ({§' A - Æ' A U'}, • grad- y) (x - Í'), 

the replacement of the factor x by (x— x') in the last formula 
being allowed on account of rot F° = 0, div U° = 0. Thence,

2»0 {^exeh} = - j¡ rfi> d»' ( A

with the notation (slightly extending NF (79))

= rc[^+^>A>
Now, the meson field equations*  yield to our approximation,

/ M. + +\Uf + U° = T

Wq\F] + F° = — JI
>Ii„ {<!»} = 7Í

(36)

* Cf. the equations NF (87) which must be completed, however, by the 
contributions from the term in NF (86), being given by NF (67).
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Inserting the values (36) in the sum of (34) and (35), and 
comparing with (32), we get just

+ = -•£ O’)

Addition of (33) and (37) then gives the generalized form of 
Siegert’s theorem

= \/nucl </<> + ./. (38)

ph
It is remarkable that the exchange part of W?(l \PJ is com

pletely determined by the static potential, even when due ac
count is taken of the effects of the first order in the velocities 
of the nucleons. From the primitive form (33) of the theorem, 
with the term omitted, it had been concluded [20] that it was 
justified to take as electric dipole interaction the operator
— £o Pnuei without auv exchange moment. Although this argu
mentation is not rigorous, we see that the conclusion is never
theless correct even to the first order of approximation with 
respect to the nuclear velocities. From the preceding analysis 
it appears, more precisely, that (since the relevant matrix ele-

_—>■ -> ->■
ments of — E0P(1) or—A0P(1) vanish) the contribution from
— £^o-^exeh can on^y a higher order in the velocities of the 
nucleons* —at first sight a somewhat surprising result, since 
the operator itself is velocity-independent — and that this con- 
tribution just cancels the term J' of the same order of magnitude 
from —^nucr Summarizing, we may say that the transition 
probabilities between stales of the same energy, insofar as electric 
dipole interaction is concerned, may, to the first order in nuclear 
velocities, indifferently be computed from the operator -fo^nuci 

or from the operator — A0SO?0{p}, given by (38) and (31). In 

the next section, we shall verify by a direct calculation that, as 
results from the way it has been introduced, J is just the 
“exchange” part of the integral current operator.

* In connexion with the problem of the photo-disintegration of the deuteron, 
treated from the point of view of the present paper, this point has been dis
cussed in detail by A. Pais, loc. cit. [7], Appendix.
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We may finally remark that Siegert’s theorem also holds in 
any meson theory using only one kind of meson field, such as 
a pure vector or a pure pseudoscalar theory. In these cases, 
the expression of J would involve a term arising from the dipole 
interaction; in the mixed theory, such terms automatically cancel

—:>

each other, yielding a simpler form for J (cf. the Appendix). It 
may therefore be said that the simplification of the electrical 
quantities in the mixed theory has its origin in Siegert’s theorem 
on account of the simpler determination of the static potential.

§ 4. The current density.
The expression of the current density in terms of the new 

variables may again be obtained as an expansion of the type 
(11). We shall not here carry out a complete calculation, but 
confine ourselves to the terms which are of practical interest; 
thus, we shall, in this expansion, neglect all terms which, 
besides involving some power of the source constants g and f 
also contain a factor of the order of magnitude of the ratio of 
the nucleon velocities to the velocity of light. This implies, in 
the first place, that in all terms of the form

we shall neglect the contributions arising from /nuci. We may 
then write to a sufficient approximation

he

(39)

As regards the dependence on the meson variables, the situation 
is here slightly complicated by the fact that /mes itself, apart 
from the current density for a system of entirely free mesons,

4e.mes = fot í'íi ^ + K-2/Adiv/-grad *A4>¡ 3, (40)
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also contains a term, linear in the meson variables, which 
depends on the nuclear source densities:

Imes
= î 4- e 

free mes ' ft c
-> —2 -> -> i
17-k faj+pa*},. (41)

Therefore, 77 as well as l] will contain terms of
2 /i c L x J

degrees 0,1 and 2 in the meson variables; for those of degree 
zero*  we readily get, from (40) and (41),

-> / {ÓoA U°~F° A 
he ' A

f° + r°A'i,°}3. (42)

We may thus write, instead of (39),

Aiucl + ^free mes _r (43)

/(1) and /(2) denoting expressions linear and quadratic, respect
ively, in the meson variables, which need not be written down 
explicitly.

The field-independent term Z(o) is not entirely analogous to 
the term (>exeh of formula (26), for the expression on the right 
in formula (42) gives rise not only to an “exchange” current 
density />xch (involving a sum over all pairs of nucleons), but 
also to a “proper” current density, fprop, consisting of a sum 
of terms pertaining to the single nucleons. Since we have as
sumed for the nucleons a theory corresponding to the idealiza- 
tion of material points, the proper current density Z will con
tain divergent contributions. Such divergences, however, have a 
quite different origin from those arising from the field-independent 

Ii
part îO?0 ^/(2)j of /(2) on account of the existence of the fluctuating 
zero-field. While, according to our general critérium, we must 
entirely discard the latter, we may therefore treat the former 
quite independently and, for instance, prevent their occurrence

* It should be noticed that the separation of the terms of degrees 0 and 2 

is not unambiguous, since a commutation of the variables F and 17 in the 
latter would, on account of the commutation rules, give rise to a contribution 
of order zero. An unambiguous definition is first obtained if one adds the 
condition that the terms in question be Hermitian. Such an Hermitization has 
been performed in formula (42), as indicated by the symmetrization bars.
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by replacing the point distribution of the nuclear sources by 
some extended distribution. To this question we shall come 
back in the next section, in connexion with the problem of the 
proper magnetic moment of nucleons. Here, we shall only point 
out that the expression of the integral field-independent current 
i*  -> ->
\ /{0) dv turns out to be identical with the quantity J defined by 
(31); the details of the calculation are reported in the Appendix. 
Owing to the factor (x — x') in J, no “proper” contribution 
obviously arises in this case, so that we actually have

dl> (44)

5. Magnetic dipole moment.
The last point we have to discuss is the transformation of 

the magnetic dipole moment of a system of mesons and nucleons 
to the new variables. For the sake of completeness, we begin 
by briefly recalling the well-known situation as regards Dirac 
particles and free mesons. Consider a Dirac particle of charge 
e and mass M; let

£
Me

x(0), jD(0) being the canonical position and momentum coordinates 
of the particle (the latter multiplied by c). The evaluation of

with the help of the Hamiltonian

<a/£ = Me (a P(°^ + n3 c)

leads, after some easy reductions, to the formula



42 Nr. 12

for the current density operator; = e/z ,- », denotes
2 Me

the “Bohr
magneton’’ relative to the mass-value M. Hence, the magnetic 

-> 1 i‘ -> ->
moment M — — X xÁldv takes the form*

2 •

1 A
2 ^0 æ A (?2 (45)

The first term represents the magnetic moment arising from the 
motion of the charge (“orbital” moment), the second is the 
intrinsic magnetic moment connected with the spin. The third 
term is in any case negligible for particles in a nucleus since 
it is of higher order in the velocities.

For “free” vector mesons in an electromagnetic field (the 
word “free” indicating the absence of nuclear sources), a quite 
analogous decomposition of the current density and magnetic 
moment is possible. This has been shown by Proca [21], and 
somewhat more elaborately by Kemmer [22] from the point of 
view of the “particle aspect” of meson theory. We repeat Kem
mer’s derivation by means of the formalism of meson field 
theory. It will here be convenient to make use of a four
dimensional notation, putting

and

thus, we have

(46)

(47)

(Up U2, U3) =

(U23, ^31- ^12) =

u,
->

I , - I = -V.

(Gt1. G24. 6„) = G-'. G3i) = F.
(48)

The part of the current density (6) corresponding to the vector 
mesons takes the form

or, according to**  (47),
* Use is here made of the formula x /\ rot u civ — 2 it dv-\- surface integral.

** Use is also made of the relation, easily derived from (46),

d¡ (a A 6) = a) A & + a A (dt b).
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= ± { Vk A <5, uk}3 + £ {sk ( f, A r‘)}„ 

_A{r¡A^r*)s.

** We have, according to formula (27) of Part I,

(49)

From the field equations
k2 tf* = - ^ Gik

we deduce
k2 S¡ V< = -8¡8k G'k = -1 (ô, 8k-8k 8,) G‘k; 

now, by (46), 

k^‘=^^a«“

(50)

(51)

(52)

(53)

and formula (49) becomes*

= ~fUkA.8, n s*  \ 1

The first term represents the ordinary convection current dens
ity, including the dependency on the vector potential; the second 
term, according to its form, is connected with an intrinsic 
(magnetic and electric) polarization of the vector mesons, while 
the third arises from a peculiar polarizability of these mesons 
in an electromagnetic field. It is noteworthy that the intrinsic 
current density by itself has a vanishing four-divergence. The 
current density of the pseudoscalar mesons contains, of course, 
only a convection term which may be written**

* We notice that
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fps-seoi = j<PAgradH'}3-2^yA|^|2. (54)

According to (48), we may write more explicitly for the total 
current density*  (53) and (54)

(55)

2

The

* du
3

->
Mfree mes

magnetic moment is, therefore, (with J%^=xAgrad)

— FA ■äW'+M’A

— 9

(56)

The two first lines constitute the “orbital” moment, the third 
line contains the “intrinsic” moment 

e
2 he

f J:> dp (57)

and a term involving the commutator of a certain expression 
with the energy of the free meson field; the last term corresponds

* A still more compendious derivation of this expression in a form similar 
to (49), but directly embodying also the contribution from the pseudoscalar 
field, is of course possible with the help of the five-dimensional projective 
formalism of meson theory. 
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to an “induced” polarization which we henceforth shall neglect. 
Comparing the expression (57) of the intrinsic magnetic moment 
with that of the spin angular momentum (cf. NF (60))

1

a glance at the formula (A4) of the Appendix will show that, 
for a transverse*  vector meson of given wave-number k and 
given electric charge, the expectation value of the magnetic 
moment is

* For a longitudinal meson, the expectation value of spin and magnetic 
moment is zero. This is also the case for a linearly polarized transverse meson. 
A well-defined value of the spin (¿h) is obtained for circularly polarized mesons.

1 f -> ->- J UNFdv,

± - . - - -
2 A |/å-2 + k2

free me, 8ives rise to the 
—r should, strictly speaking, 
times the commutator with

• . ctimes that of the spin; for slow mesons, this becomes ± z 
e 2/ík

= ± ■ ■ - , i. e. the normal value with a “Landé factor” unity [231.2 Mc J i Jm
Turning now to the expression (43) of the current density 

of our system of nucleons and mesons, we shall — leaving aside 
the contributions from the field-dependent parts Z(1) + Z(Q)— set 
up the expression of the magnetic dipole moment of the system. 
In the first place, wre see that the term Z d contributes to this 

moment a sum of terms of the form (45) each multiplied by
1— r3\ + \

the corresponding factor —-—I, while Z( 
contribution (56). Here, the symbol 
be understood as indicating (i/j) 1 
the total energy of free nucleons and mesons; but we may with 
a negligible error replace this by the total energy of the system, 
including the couplings (of which the most important is the 
static interaction between the nucleons), since the modifications 
so introduced involve both the source constants and the nuclear 
velocities. The terms of the magnetic moment involving will 
then not give any contribution either to the expectation value 
of the moment in a stationary state of the system or to the 
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matrix elements pertaining to processes in which the total energy 
is conserved.

From the last term Z(o) — /exch + /prop of (43) we derive an 
“exchange magnetic moment’’ Afexch and a further contribution 
Afprop to the magnetic moments of the single nucleons, which 
we shall call “proper magnetic moment” [24]. The evaluation of

x A /(0) du (58)

is carried out in the Appendix, the contributions from the vector 
and from the pseudoscalar meson fields being calculated separ- 
ately; it again appears that the resulting expression of Afexch 
is considerably simpler in the mixed theory than in any other*.  
Using the notation

* It should be noted that the simplification occurs in the part of Afexch 
which is not translation invariant (cf. the Appendix), i. e. directly results from 

the simpler form of J on mixed theory.

it may be written

The proper magnetic moment is simply the sum of the con
tributions from the vector and the pseudoscalar meson fields:

the latter are
Mprop

= Mvect _1_ yps-scal •
prop 1 prop ’ (61)

A
A

A w(<)

„ps-scal  
prop (62)

I -> -> l\læ"; }a 1 — K 1 X — x' ' ¡J (f) du' du"

■ -> ->
læ 3KI x' — x"

-> \|•æo] æo i + k x' -~ x" ) ty du' du",
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with x0 = j. In these formulae, S(l) and JP(l) are the
I x' — x" I ->

contributions of the z-th nucleon to the source densities Ä and
JP (cf. NF. p. 10).

According to NF (4, 24) we may write

^(í) = &T(%(8°tf(i)D(®-®(í))

(Í ) = -^ T(i) a(i) d(x — í(0),
(64)

the delta-function being replaced by a continuous distribution 
function Z)(æ —í(,)) (with ^D^x)du = lj. The formulae (62) 

and (63) then take the simpler form

J^prop = («)

where /li0 denotes (as above) the nuclear magneton, while

„veet = . 2 Ç fl (*,)  o (*„)  ( j _ K ) y 0 d„< dv„ (66)

nc Mm K

„p»-,enl= Ä. A.^CD(*') D(J-)(l_2Kg)9>(e)dl>'dl,", (67) 
hc Mm 3 K J

I -> “> I
with Q = \x' — x"\; the last formula is valid on the assumption 
that the distribution function D (x) is spherically symmetrical. 
The value of g on the mixed theory is therefore (putting fl = g~>)

p = + ^ps-scal

D (x') D (x") (4 — 5 K(>) (p (o) du' du". (68)

According to (65), we should expect the total magnetic moments 
of proton (at rest) and neutron to be o' nP and cs p,N, re
spectively, with

P'p — 1 + //■, P'N P •
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For a closer discussion of the expressions (66), (67), and (68) 
for ,a, the reader is referred to the forthcoming paper by Serpe: 
it appears that the mixed theory will under reasonable assumpt
ions for the distribution function I) yield a value of of the 
right sign and the right order of magnitude. From the latest 
experimental determinations of the magnetic moments of proton 
[25] and neutron [26],

= 2,7896 ± 0,0008 
fiN = — 1,935 ± 0,02, (70)

it would seem, however, that there is a slight difference between 
the “proper” magnetic moments of the two particles. Such a 
dissymmetry cannot be accounted for by the present theory, 
since it only arises in a higher approximation which should be 
discarded according to our general prescription. The manner in 
which the dissymmetry appears has been explained by Fröhlich, 
Heitler and Kemmer [24]: in the expression of the self-energy 
of a nucleon in an external magnetic field, the second approxim
ation terms consist of quotients of matrix elements independent 
of the magnetic field by differences of energy values for the 
initial and the intermediate states considered; now, such differ
ences will contain a term proportional to the magnetic field 
which, when due account is taken of the magnetic energy ±/¿qH 
of the free proton states, turns out to be different for the alter
native cases of a proton or a neutron. This effect clearly falls 
outside the scope of our theory*  and can only be expected to 
present itself in a theory yielding a correct treatment of self
energy problems; we may provisorily allow for it by replacing 
the above expression (65) of M p by

* It may be pointed out that an asymmetry of the kind here discussed 
could not be derived from the assumption of a small deviation from the sym
metrical Kemmer combination of charged and neutral meson fields. In fact, the 
most general combination of such fields would be obtained by replacing in the 
expressions of the source densities each rf by a linear combination of the form 
2 a., T, + b, with c-number coefficients a.,, b.. Then, the same combination ik k 9 9k 9
would also appear in the expressions of the static potentials and fields, and it 
is immediately apparent from formula (42) that this would not give rise to 
any term independent of in the expression of the proper moment, such as 
would be required for the asymmetry effect in question.
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where [ip and fiN have their empirical values (70).

§ 6. Electromagnetic properties of the deuteron.
A few remarks may still be added concerning the applica

tion of the preceding formulae to the simplest nuclear system, 
the deuteron. Comparing the treatment in meson theory with 
that in the previous theories, in which the proton was treated 
as a point charge in some arbitrarily assumed short range nuclear 
field, wre see that, as regards the electric properties, there is no 
other difference than that arising from the influence of the latter 
field on the form of the wave functions. In fact, as stated in 
section 3 above, the exchange dipole moment gives only a 
negligible contribution, while the exchange quadrupole moment 
with respect to the centre of gravity of the deuteron vanishes 
according to formula (28). The exchange magnetic moment, on 
the other hand, does play an appreciable part which, in some 
cases, may even be quite considerable; examples of this are 
provided by Pais’ investigation of the photomagnetic effect of the 
deuteron and the inverse process of neutron capture by protons [7].

Since the exchange terms do not contribute anything to the 
expectation values of the corresponding quantities in stationary 
states of the system, no new element is introduced by our 
theory into the situation with regard to the magnetic moment 
of the deuteron in relation to its quadrupole moment. The 
existence of the latter, with a value estimated [27] to be

Q = 2,73-10 27 cm2 (72)
with an uncertainty of about 2 °/o, implies that the ground state 
of the deuteron must be a mixture of a 3S state with a small 
amount <5 of ]I)V state. The magnetic moment of the ground 
state can then easily be calculated in terms of ó. The exact 
expression of the ¿-component of the magnetic moment is

D.Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XX, 12. 4
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denoting the z-component of the orbital angular momentum 
of the i-th nucleon. For its expectation value*  in a stationary 
state of the nucleus, we get, since the mean value of A0 is zero (i) . . e •*

* The expectation value of 4 will be denoted by {a).
** The relativistic correction arising from the factors [1 —was discussed 

by H. Margenau [28].
*** This is also the case, as a rough estimate shows, with the derivation of 

the quadrupole moment based on the non-static directional coupling of the

and that of *s approximately unity**,

(l*p  + I 2 I + - 5D?/L 'T 2 <

where Sz, Lz represent the z-components of the total spin and 
total orbital momentum, respectively. Characterizing the stationary 
state in the usual way by the quantum numbers L, S, J, m, 
this may be written

with the Landé factor

(LSJ)
P'D

J(J ± 1 )_± S (S + 1 )j-L (L + 1 )
2./(./±l)

1 J(J±1)±L(L±1)-S(S±1)
2 2J(J±1)

For the ground state we thus get

flD ~ Í1 (^p + P'n) +

(74)

The direct determination of /¿D [25],

HD = 0,8565 ±0,0004, (75)

lies very close to juN±iup, which, according to (70), is 0,85 ±0,02; 
on the other hand, the amount ô of D-state necessary to account 
for the quadrupole moment (72), while depending on the form 
of meson theory adopted, is of the order of magnitude of a few 
percent***.  So far, there is thus no certain discrepancy between 
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formula (74) and the empirical results (70), (75) and (72), though 
the margin of error appears rather strained. A decision on this 
point can only be arrived at by more precise measurements, 
especially of the neutron moment. It should also be remembered 
that a future theory, taking a correct account of the universal 
limiting length, might, analogously to the dissymmetry effect 
discussed in section 5, yield a small correction to the purely 
additive expression (73) of Mz arising from the nuclear field 
interaction between the neutron and the proton.

mixed theory, as developed in NF, Part III, if the nuclear source constants are 
chosen so as to give the right order of magnitude for the quadrupole moment. 
(If, however, the relations between these constants suggested by the five
dimensional formalism [4] are adopted, the quadrupole moment vanishes in 
that approximation).



Appendix.

Mean values for the zero-point meson field.
Let us take as usual progressive plane waves

u (k;x) = L 2 el k x, (A 1)

satisfying a cyclic condition within a cube of side L:

k = -j- (nx, n2, n3); (ns integers) (A 2)

the wave-vector k is connected with the momentum p and 
energy E of a meson by

p = Ïï k

E = hcek 

with = |/?c2 + k2.
(A 3)

We introduce quantized amplitudes a \k',j) referring to mesons 
of a given wave-vector (momentum and energy); the index j 
will be given the value 0 for pseudoscalar mesons and the 
values 1, 2, 3 for vector mesons, 1 and 2 referring to two inde
pendent kinds of transversal (linear) polarization of the vector 
meson field, 3 to the longitudinal polarization. The directions 
of polarization will be characterized by three mutually ortho
gonal unit vectors e.(k).

The meson fields may then be expressed as a superposition 
of such plane waves in the following way:
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J,

(A4)

<!> = — i

The commutation rules for the amplitudes are

ii’ ’ (A 5)

the operators 

which obey similar commutation rules; then 

->
F =

Nn\k;j) = an\k’j) (A6)

numbers of mesons of kind j, wave-vector k andrepresent the
character n with respect to the electric charge: is the num
ber of neutral mesons, the total number of positively
and negatively charged mesons. We get the numbers of positive 
or negative mesons, separately, when replacing the amplitudes 
«i, aa by 

(*; j), (?';/)]_ = ó (/c, k')

other pairs commuting;

l

are the numbers of positive and negative mesons, respectively, 
the total charge of the meson field taking the form

\ era„<tv = e£ ¿[n;(*; j)-AT.(fc; j)]■
-> J=0

For the state corresponding to no meson, the above formulae 
yield, with
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the following mean values:

(A 7)

>

-
for U and F, it mayfrom the canonical commutation rules 

further be deduced without calculation:

2^-3

V- i+ k2 '

lî. C \ (A 8)

all other mean values of products of two field components 
vanish. The summations (or, in the limit L —> oo, integrations) 
over the wave-vector components occurring in the preceding 
formulae may all be derived from the relation 

Ko (x r) = 2 7T2 lim u æ + æ') -
k k

( r == I x — x I ) (A 9)

where Æ0(z) is a Bessel function of the second kind with 
imaginary argument, connected writh Hankel’s functions by the 
general formula*

* For the definition and properties of Kn (z), see G. Watson, A treatise 
on the theory of Bessel functions (1922), 3'7 (p. 77), 3'71 (p. 79), 6'16 
(p. 172). In E. Whittaker and G. Watson, A course of modern analysis, 
17'71 (4th Ed., p. 373), a function called A'n(z), but differing from the one 
here used by a factor (— l)n, is considered.
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K„(z) = ye’T^'tfe).

55

In fact, since 
(k2 —. Z) V = V,

we get
^£-MU-î') = ^(K2-./)KoO<r)
¿ k gk 71

= ^'-«dKr) = S(r),
4 n r

~ £kv [k; x—x') = (k2 — z/) <S (f) == ® (r);
k

(A 10)

the formulae (A 7) may then be written as follows:

(All)

We are interested in

æ3 = {©„©„},
where

f(l) (x) — grad(l) <p (| a? — a/l)|) = —grady.
From (A 11) we get

(A 12)

Formula (A 9), after the summation 
£3 f

in the limit by —z \ • • • • dk„ dk„ dk., 8nà J x y z
integration performed, takes the form

over k on the right has been replaced 
£3 l’

or —- \ • • • • k^ dk dll, and the angle
8ti3 1

Æ0<Kr) = L r°°sin kr kdk 
r Jo (* 2 + k2)’-'*  ’ 

this last relation is in its turn readily derived from Basset’s formula (see 
G. Watson, loc. cit. 6'16 (p. 172))

, . f30 cos k dk fxcos/crdA-Ko (kt) = \ -----------= \ -—■-----
J0j/fc2 + (Kr)2 ,10|/F+k-2

by a partial integration.
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= Jdü7(i)?íy @ •

By partial integrations, the last integral in and W?.2
transformed into

is easily

so that, taking account of (A 10), we get

= K 2î0?3, s^2 = 2®?3. (A 13)

Further, since y (| x— |) satisfies the equation

(k2—z/) ÿ = Ó (x—
we may write

W?3 = /’(l) • grad(i) ch/ÿ (I æ' — æ'D (K“ — &

— /’(l) • grad(,) <S (|æ —

dy d (S (r'1'*)

drar

with r(l) = |æ —From (A 10) and a recurrence formula for 
the Kn, we finally obtain

(A 14)

The exchange and proper current density and related quantities.
We shall here be concerned with the calculation of

C 1 Í* -*■
\ /(0) du and M(0) = - \ x A Z(o) du,
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/(0) being given by (42). For the evaluation of the first integral, 
we need formula NF (89), which we re-write in the form

i-> -> i e— K i X—x' I
8 7TK ; (A 15)

from this, we deduce
h

X— X 1/

and ( since

(A 16)

tip — K2 = — y (I x — x' |). (A 17)

On account of the symmetrization bars in formula (42), we may 
in all following calculations freely interchange the order of 
factors, even though they are not commutable; for simplicity, 
we shall omit the bars from now on. From NF (9, 14) we get, 
in the first place,

J/70 a I 2V' A AT" grad' y (|rr—a?'|) y (|x—æ"|) du' du", (A 18)

whence, by (A 15),

(i"A V°dv = Cv A X" grad' <// (|í'-í"|) di>' dv"

= "A A 2V (x — x') y (|x — x'|) dv dv',
(A 19)

by (A 16). The 3-component of this quantity, multiplied by 
— — , coincides with the first term of the expression J given 
by (31).

Similarly, we get from NF (14)

G° * U° = - jj G° * (S' A grad' y) dv'

= — \ (s'A G°) grad' y dv' + Ç S' A (<?° grad' y) dv';

inserting in the first term the value NF (37) of G° and in the 
second its value NF (10), we have
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a~ 5 &") gra^y (læ—æd) y (Iæ—x"I) ^ö'du"

~ $ [(^" grad7') A (S' grad'')]

grad' ep 11 x—x' |) ep (| x—x" |) do' du'' 

+ j S'A (-S grad'tp) do'—J <S'Adiv(grad'y A U°) do',

>(A 20)

since rot U° -grad' ep = — div (grad' ep A U°). Again using A (15) 
and A (16), we obtain immediately

j¡ G°*U°du  = - -i J K2 (á' A á) (Í-x') ep (I x-x' I) do do' 

+ j {[($' grad') A (sgrad)] grad ip 

— S'A (s grad <p)| du du',

’(A 21)

the integral over the last term of (A 20) reducing to a vanishing 
surface integral. The first term of (A 21), by taking the 3-com-

e
ponent and multiplying by — , gives just the remaining term

77 C
of the expression (31) of J. The last term of (A 21) would subsist 
in the integral exchange current on a pure vector meson theory; 
in the mixed theory, however, it is compensated by the con
tribution from the pseudoscalar field.

In fact, from NF (30, 40) we have

= j jPA (i*'  grad' ep) du'

+ j [(/•"grad") A (Pgrad') ] grad"y (|x—x'|) ep (|x—x"|) (A 22)
du' du",

whence, by (A 15),

$roAV°di> = ^{jP'AÍjPgrady)

P grad') A ( J*grad)  ] grad ip} du du'.
(A23)

In such an expression we may indeed, on the mixed theory, 
substitute Ä for JP, apart from terms of higher order in the 
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nuclear velocities. Summing up, we have thus established 
formula (44).

We now turn to the calculation of M(o), which runs entirely 
parallel to the preceding derivation of (44). Only, the role of the 
auxiliary relations (A 15), (A 16) is in this case played by

(A 24)

(A 25)

To begin with, we get from (A 18) and (A 24), (A 25),

Further, from (A 20), we get by the same procedure

Ua [g°*U°)  dv =

= —K2 (>§>' A S") (x' A æ") ÿ (I x'— x" I) dv' dv"

— S [(^,/gracH A £rad")] (x'Áx") y (I x' — x"|) dv'dv"

—(x"A S') A ( S’" grad" y) dv' dv"

— (x A S') A div (grad' <p A U°) dv dv' ;

the second and third terms together give



(A 27)

60 Nr. 12

w
hile the last becom

es
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contribution of the vector

->
// (A 28)

account of (A 15), we obtain 
meson field alone to M(o)

->vect
M{0)

From (A 26), (A 27), and taking 
for the

K I X'Z —X

e
4 he

owing to the factors x Nx", the last two terms are of the ex
change type only, while the first also involves a proper magnetic 
moment given by (62).

Finally, we derive from (A 22), for the pseudoscalar field,

->

With the notation x0 -> ->■
f f f

X —X

qdu du"

-> -> 
t Ifoc — X , the first term may be written

j [(j®/ x0)aP"-Fa(p' x0)] A x0 (1 + k|x' — x"|) y du do" ; 

with the help of the vector relation (a Ai») Ac = (a c) b — a(b c ), 
which holds when b and c are commutable, this transforms into

j [(-P, a P") A x0 ] A x0 (1 + k|x' — x" I) y du du",

or, using again the same relation.



62 Nr. 12

> (A 29)

^Jps-scal
ÏW(0)

I / / 
k x — X

here also the first integral only contributes to the proper mag
netic moment, viz. the moment (63).

It now again appears that, to the first order in the nuclear 
velocities, the last term in (A 29) just compensates the corre
sponding term of (A 28), so that, using NF (3, 4, 24) and the 
notation (59), and taking into account that fl — gl, we find for 
the exchange moment in the mixed theory the expression (60). 
It will be noticed that the exchange moment is not translation 
invariant; jf the origin is displaced by a, the exchange moment 

1 •> ->■
changes by — a A J.

Expression of the proper magnetic moments of nucleons 
for special source distributions.

We shall here briefly indicate how the formulae (66), (67), 
(68) for the “Landé factor” g of the proper magnetic moment 
may be evaluated under simple assumptions over the source 
density function D(r). The integrals occurring in these formulae 
are of the form

J J 4 7T(>
with

Q = l/r'2 + r"2 —2r'r"u,

u denoting the cosine of the angle between x' and x". Introducing 
suitable polar coordinates, we obtain

K(r'+r")

F(y)dy. (A 30)
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For the contributions from the vector and pseudoscalar meson 
field, respectively, we have

Fvect (y) = (1 - y) e"*,  Fps'scal (y) = (1 - 2 y) e~v. (A 31)

Consider a uniform source distribution on the surface of a 
Sphere of radius r0; the corresponding density function may be 
expressed by

I)(r) = (A 32)
4/Tr0

and (A 30) then reduces to

^SUP = S-C-^F(ÿ)d!/. (A 33)
o n r0 K *'  0

In this way, putting e = xr0, we obtain
„2

vect y 2 M 2 _ 2f
4 n h c

’ C 
e

ps-scal 1 2 M 1 [e~2e (1 +4f)-4 n he m 3 f2

„ - 9* M 1 [e—2f (1+10e) —
4nhc 3?

(A 34)

For small values of e, the functions of e occurring in (A 34) 
approximately become

å-2'— — 4, 
s

respectively.
In the case of a uniform volume distribution of the sources

within a sphere of radius r0, we get from (A 30), (A 31), by a 
straightforward calculation,

vect <z5 M 18
h 4 71 he Afm 66

ps-scal_ fl M 3
4 7T he Mm ?

=
gl M .3

47The m f6
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For small values of e, the approximate values of the functions 
of E occurring in (A 35) are

36 22 58
5e ’ 5e ’ 5f ’

respectively.
The formulae (A 34), (A 35) have been obtained by Serpe 

in another way; for a numerical discussion, the reader may be 
referred to Serpe’s paper.

Correction :
p. 6, 29th line, ‘it is out of question’ read ‘it is excluded’.
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